Lubricants for synthetic and natural refrigerants: effects on system efficiency

Claudio Zilio

Università di Padova - Dipartimento di Fisica Tecnica Via Venezia, 1, I-35100 Padova – Italy

Sergio Bobbo CNR-ITC

c.so Stai Uniti, 4, I-35100 Padova - Italy

XI European Conference on Refrigeration and Air Conditioning Milan, June 17th and 18th, 2005

Presentation outline:

- Solubility and miscibility issues of lubricants with carbon dioxide
- Needs for a "comprehensive thermodynamic approach"
- Recent investigations on lubricant effects in evaporators and condensers

Refrigerant compressor lubricant

A lubricant should answer to some criteria to be suitable to use in refrigerant cycle with vapor compression. :

- -characteristics of lubrication of the compressor (solubility viscosity)
- -appropriate behavior for the return to the compressor (miscibility)
- -stability and compatibility with other materials used

There is need for a "Comprehensive Thermodynamic Approach" to modelling refrigerant –lubricant mixtures (J. Thome, 1995)

Old "Oil contamination approach"

New approach: Oil-refrigerant system as a zeotropic mixture with bubble point temp., local oil concentrations, modified liquid specific heat and enthalpy changes during thermodynamic transformations.

XI European Conference on Refrigeration and Air Conditioning Milan, June 17th and 18th, 2005

Effects of lubricant in heat exchangers

- Modified LMTD (Log Mean Temperature Difference)
- Modified HTC (Heat transfer coefficient)
- Modified pressure drops
- The major effect is on EVAPORATOR

Effects on boiling heat transfer coefficients: R134a-POE (DE589) pool boiling on plain roughened copper surface (1)

- •Kedzierski (2005) recent study with spectrofluorometric technique.
- •The lubricant is preferentially drawn out of the bulk oil/refrigerant mixture by the boiling process and accumulates on the surface in excess of the bulk concentration.
- •Measurements indicate that an approx. 40 μm oil layer is created.
- •Three different mass concentration were considered for the DE589 POE lubricant: 0.5%, 1%, 2%.

XI European Conference on Refrigeration and Air Conditioning Milan, June 17th and 18th, 2005

Effects on boiling heat transfer coefficients: R134a-POE (DE589) pool boiling on plain roughened copper surface (2)

q"p: pure R134a heat flux

q"_m: R134a-POE heat flux

 T_s = 277.6 K liquid saturation temperature of the R134a-POE mixture

Tw: wall temperature

 $\Delta T_s = T_w - T_s$ wall superheat

 $q_m^n/q_p^n > 1$ indicates heat transfer enhancement

R134a-POE (99.5/0.5) shows a heat transfer enhancement for q_m^2 between 5 and 20 kW/m²

The graph is taken from:

Effect of bulk lubricant concentration on the excess surface density during R134a pool boiling

Int. J. Refrigeration. 2005, 28, 526-537

Effects of lubricant during in-tube condensers (1)

- •Bassi and Bansal (2003): R134a-POE condensing at T_{sat} between 35 and 45 °C. Internal condensation HTC reduces by 5% (R134a-POE 98/2 in mass) and by 10% (R134a-POE 95/5 in mass).
- •Infante Ferreira et al. (2003): R404A-POE (0 to 4% oil concentration) condensing at T_s = 40°C inside smooth, microfin and cross-hatched horizontal tubes. Up to 2% oil mass concentration, lubricant slightly increases heat transfer for enhanced surfaces. Oil higher concentration penalizes HTC especially at high mass flux.
- •Marked effect of pressure drops: 4% oil mass concentration causes up to 25% pressure drop increment

XI European Conference on Refrigeration and Air Conditioning Milan, June 17th and 18th, 2005

Effects of lubricant during in-tube condensers (2)

- •Eckels and Holthaus (2004): Results of ASHRAE project RP-1067
- •R134a, R407C, R410A with POE and R22 with mineral oil (0 to 5% oil mass concentration) superheated vapor heat transfer and pressure drop in smooth tubes with 6.5 and 8 mm ID. Test pressure equivalent to 40 $^{\circ}$ C saturation.
- •The addition of lubricant always increases the HTC up to 40% for all oil concentrations.
- •Astonishing effect on pressure drops: increase up to 300% for $\rm Re_g$ =300000 and up to 200% for $\rm Re_g$ =600000.

Open question: effects of lubricant in aluminium minichannel evaporator and condensers (HTC and pressure drop): very poor experimental data

CONCLUSIONS

- •A thermodynamic approach is needed for the modelling of lubricant effects mainly for the optimisation of the heat transfer in a vapor cycle system operating machine and for improving control strategies.
- •A fundamental step towards this "thermodynamic approach" is linked to the availability of full sets of solubility data for different refrigerants and lubricant types.
- •Further experimental and theoretical investigations are needed to fill the lack of data about lubricants effects on HTC and pressure drops of refrigerant-oil mixtures.

XI European Conference on Refrigeration and Air Conditioning Milan, June 17th and 18th, 2005

Cited literature

- J. R. Thome, Comprehensive thermodynamic approach to modeling refrigerant-lubricating oil mixtures, HVAC&R Research. 1995, 1, 110-126
- M. A. Kedzierski, Effect of bulk lubricant concentration on the excess surface density during R134a pool boiling Int. J. Refrigeration. 2005, 28, 526-537
- M. Youbi-Idrissi, J. Bonjour, M.-F. Terrier, C. Marvillet, F. Meunier, Oil presence in an evaporator: experimental validation of a refrigerant/oil mixture enthalpy calculation model. *Int. J. Refrigeration.* **2004**, *27*, 215-224
- C. A. Infante Ferreira, T. A. Newell, J. C. Chato, X. Nan, R404A condensing under forced flow conditions inside smooth, microfin and cross-hatched horizontal tubes. *Int. J. Refrigeration.* **2003**, *26*, 433-441
- S. J. Eckels, G. D. Holthaus, Single-phase heat transfer and pressure drop performance in smooth tubes with R-22, R-134a, R-407C, and R-410a at superheated conditions with lubricant mixtures (RP-1067), HVAC&R Research. 2004, 10, 421-439

Thank you!

